9
114716
OWNER’S MANUAL
Running Starting
Equipment Watts Watts
1/2" Drill 1000 1250
Toaster 1200 1200
Coffee maker 1200 1200
Skillet 1200 1200
14" Chain saw 1200 1500
Water well pump
(1/2 hp) 1000 3000
Hot plate/range
(per burner) 1500 1500
10" Table saw 2000 6000
Water heater
(storage-type)
5000 5000
Running Starting
Equipment Watts Watts
Light bulb (100W) 100 100
Radio 150 150
Fan 200 600
Television 400 400
Furnace fan
(1/3 hp)
with blower 600 1800
Vacuum cleaner 600 750
Sump pump
(1/3 hp)
700 2100
Refrigerator/freezer 800 2400
6" Circular saw 800 1000
Floodlight 1000 1000
watts figure.
Note:
Some motors re-
quire nearly the same wattage to run as
to start. These items include saws,
drills, hair dryers, and food mixers. See
Chart 1 for typical appliance wattage
examples.
4. Add watts and starting watts of all
items. This total must not be larger than
the rated wattage of your generator. It
is a good idea to have up to 25% extra
capacity for future needs or extra
equipment.
* – Always use starting watts, not running watts, when figuring correct electrical load.
x – Motors of higher horsepower are not generally used.
Chart 1 - Typical Electric Appliance Wattages
DETERMINING
ELECTRICAL LOAD
FOR GENERATOR
You must decide what electrical load your
generator can power. Do this before using
generator. Use the following four-step
method. It will help you select a load that is
not too large. Make sure total wattage of all
electrical loads does not exceed rated watt-
age of generator. For rated wattage of your
generator, see Specifications, page 5. Elec-
tric motors present a special problem when
figuring load. Read Step 3 carefully.
1. Make two lists of items you want pow-
ered by generator. List all motors and
motor powered appliances in one. List all
lights, small appliances, etc. in the other.
For standby service to home or building,
only include items you must power.
2. Enter running watts of each item ex-
cept motors. The light bulb or appliance
nameplate lists its wattage. Remember,
1KW = 1000 watts.
Note:
The name-
plate may not list wattage. It may only
list volts and amps. The formula for
finding wattage is: Volts x Amps =
Watts. For example: An appliance
nameplate states 3 amps at 120 volts. 3
amps x 120 volts = 360 watts.
3. Electric motors present a special prob-
lem. They require up to three-times
their rated wattage to start. Chart 2,
below, shows starting watts for differ-
ent size motors. For example: an elec-
tric motor nameplate states 5 amps at
120 volts. 5 amps x 120 volts = 600
watts running. Multiply this figure by
3. This will show the starting watts
needed. 600 watts x 3 = 1800 watts to
start. When figuring the generator load
for motors, you must use the starting
watts figure. Do not use the running
Approximate Starting Watts*
Motor Approximate Universal Repulsion Split
HP Running Motors Induction Capacitor Phase
Rating Watts (small appliance) Motors Motors Motors
1/8 500 625 1100 1500 2250
1/4 700 875 1550 2100 3150
1/3 800 1000 1750 2400 3600
1/2 1100 1375 2400 3300 4950
3/4 1400 1750 3100 4200 x
1 1700 2125 3750 5100 x
1
1
/
2
2100 2625 4620 6300 x
2 2450 3075 5400 7350 x
3 3600 x 7900 10800 x
Chart 2